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In June 2001, officials in London unveiled a striking new feat of
engineering - the millennium bridge - a pedestrian bridge spanning
the river Thames. It promised to be very useful and it was cool to
look at but it was closed almost immediately, because when people
used the bridge it swayed back and forth noticeably, due to the
force of their footsteps.

Undeterred, people kept using the bridge, but as they walked they
began to lean into the swaying, to keep themselves from falling
over. And that only made things worse. Eventually the motion of the
bridge became so severe that the bridge took on the shape of a
giant S.

Essentially, a horizontal wave. the bridge had to be closed and the
engineers took nearly two years to fix the problems. So what was
wrong with the millennium bridge? And why didn't the engineers
foresee the problem? The answer lies in oscillations.

Theme music.

The physics that caused the swaying of the millennium bridge has
to do with oscillations, or back and forth motion. Or more
specifically, it has to do with simple harmonic motion, where
oscillations follow a particular, consistent pattern.

But before we had the millennium bridge as a real life example,
physicists often described simple harmonic motion in terms of a ball
attached to a horizontal spring, lying on a table.

While it's lying there at rest, it's in equilibrium, and when you move
the ball so that it stretches the spring then let go, the ball keeps
moving back and forth forever... in a friction-less world.

That back and forth motion caused by the force of the spring is
simple harmonic motion.

Now, we want to know two things about this oscillating ball - what
kings of energy does it have, and what's it's maximum velocity?

To better understand what's happening to the ball, let's start with it's
energy. As the ball compresses and stretches the string, both
kinetic energy and potential energy come into play.

Kinetic energy is the energy of motion and as the ball moves there
are two points - the turning points where it's not moving. One point
is where the spring is compressed all the way and the other is
where it's stretched all the way, and the distance between these two
points and the equilibrium point is called the amplitude.

At those two turning points, the ball won't have any kinetic energy,
since it isn't moving. Instead, all of the balls energy will be potential
energy from the spring - half of the spring constant plus the
amplitude squared.

Now, as the ball moves towards the middle, its kinetic energy starts
to increase because it's moving faster and faster. And at the same
time, its potential energy decreases, keeping its total energy the
same.

And exactly in the middle of the balls motion, at the equilibrium
point, its potential energy goes down to zero. The ball is back where
it started the the ball is no longer pulling on it.

Its kinetic energy, on the other hand, has reached its maximum,
which means that at the point the total energy of the ball will be
equal to half of its mass times its maximum velocity squared.

Now we have two equations for the total energy in this oscillating
spring, which we can combine into one equation, and if we use

algebra to move around its variables we can start to answer the
second question we had about the ball.

We wanted to know the balls maximum velocity, and this equation
tells us that it's equal to the amplitude times the square root of the
spring constant divided by its mass.

So we've answered our two questions about the ball on the spring,
we know about its energy and we have an equation for its maximum
velocity.

But there's a lot more going on with this ball than just its energy and
velocity. It also has properties like period, a frequency, and an
angular velocity plus its position changes with time.

You might recognized those terms because we already talked about
them in our episode on uniform circular motion, and that's no
coincidence. Simple harmonic motion is actually a lot like uniform
circular motion - mathematically speaking.

You can see this for yourself if you compare that ball's motion on
the spring to an object in uniform circular motion, say a marble,
moving along a ring at a constant speed.

Ok, I admit, it might seem like kind of a weird comparison at first.
For one thing the ball on the spring is moving in one dimension,
while a marble moving along a circular path is in two dimensions.

But what if you take the ring and look at it from the side. The marble
keeps moving along its circular path, but to you it looks like its just
moving back and forth along a straight line.

Not only that, but it looks like this marble is stopping momentarily as
it changes direction and moving faster as it gets close to the middle,
which is exactly the same way the ball was moving on the spring.

now let's take this comparison one step further. Let's assume the
radius of the ring is the same as the amplitude of the balls motion
on the spring, and that the marble's constant speed along the ring is
equal to the maximum speed of the ball on the spring.

In that case, if you did the maths, you'd find that the equation for the
marble's velocity - when you look at it edge on - is exactly the same
equation that described the velocity of the ball on the spring.

So let's recall what we know about uniform circular motion, to see
what it can tell us about simple harmonic motion.

We know that it takes for the marble to move around the ring once
is called the period. We also know that the period will be equal to
the circumference of the ring divided by the marble's speed, and the
radius of the circle is the same as the balls amplitude on the spring,
so its circumference will be equal to two times pi times the
amplitude.

This means that the period will be equal to two times pi times the
amplitude divided by the marble's speed - which again is the same
as the ball's maximum speed as it moves on the spring.

and we can simplify that equation since we know that the maximum
speed of the ball is equal to the amplitude times the square root of
the spring constant divided by the mass.

So, the period of the marble's motion around the ring is equal to two
pi times the square root of m over k.

Now, we've also talked about the frequency of uniform circular
motion. It's the number of revolutions the marble makes around the
ring every second, and its equal to one divided by the period.
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In this case, the frequency will also be equal to one over two pi
times the square root of k over m. That'll apply to the ball on the
spring too, because the rules are the same.

Finally, there's angular velocity to consider. In uniform circular
motion, we've described it as the number of radians per second that
the marble covers as it moves around the ring. And angular velocity
is jut equal to the frequency times two pi, which means that in the
case of the ball on the spring is equal to the square root of k over
m.

So now, with the help of our knowledge about circular motion, we
can understand the period, frequency and angular velocity of the
ball's simple harmonic motion as it oscillates on the spring.

But there's one more question - how does the balls position change
over time? To find out, we'll have to analyze the marble's motion
along the ring again, and the answer will involve some trigonometry,
but it's not particularly complicated trig, so you'll be fine.

At any given point along its path, the marble will be at a certain
angle to the right hand side of the ring, and the cosine of that angle
will be equal to its horizontal distance from the centre of the ring
divided by the rings radius. We already know that the radius of the
ring is the same as the amplitude of the balls motion along the
spring.

And if you turn the ring so it looks like a line again, you can see that
the marble's horizontal distance from the centre of the ring is the
same as the balls distance from the equilibrium points.

So the cosine of theta is equal to the balls position, divided by its
amplitude. In other words the balls position is equal to the amplitude
plus the cosine of the angle. And we can simplify this equation too.

In the same way that distance is equal to velocity multiplied by time,
the angle is equal to the angular velocity multiplied by time.

So we can write the equation for the position of the ball as x equals
A cosine omega t. And when you graph the equation, something
interesting happens - it looks like a wave.

We'll be talking a lot more about waves in our next three episodes,
but for now it's helpful just to see the connection here: for an object
in simple harmonic motion, the graph of its position versus time is a
wave. Which is why the swaying of the millennium bridge looked
like a wave.

Speaking of the bridge, we can now better understand what
happened to it. The bridges shimmy was the result of oscillation, but
it was made worse by another culprit: resonance.

Resonance can increase the amplitude of an oscillation by applying
force at just the right frequency, kind of like how you can get a kid
on a swing set to swing higher by pushing at just the right moment.

The engineers of the millennium bridge were reminded of that, the
hard way. When pedestrians on the bridge began to lean into its
swaying, they created resonance - they amplified the amplitude of
the oscillation.

And the engineers of the bridge did account for the oscillations
caused by resonance when they designed it. But they only
considered the vertical oscillations, the kind that would have made
the bridge bounce up and down.

They didn't realize that they'd also had to factor in the horizontal
swaying caused by people walking. So it was only a tiny bit of
swaying a first but it got a lot worse because people were leaning

into their steps causing resonance.

In the end, engineers had to apply a series of changes to the bridge
to counteract its oscillations, because if there's one thing you don't
want your bridge to be doing, it's the wave.

Today you learned about simple harmonic motion, the energy of
that motion, and how we can use math of uniform circular motion to
find the period, frequency, and angular velocity of a mass on a
spring. We also described how the position of an object in simple
harmonic motion changes over time.

Crash Course Physics is produced in association with PBS Digital
Studios. You can head over to their channel and check out a playlist
of the latest episodes from shows like First Person, PBS Game
Show, and The Good Stuff.

This episode of Crash Course was filmed in the Dr. Cheryl C.
Kinney Crash Course studio with the help of these amazing people,
and our equally amazing graphics team is Thought Cafe.
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