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At this point, we've covered a lot of the basics when it comes to how
things move, but we've mostly been focusing on only one type of
motion: translational motion, which is when something moves
through space, but doesn't rotate. But rotational motion is also a
thing, and an important one.

For example, the spin of a football, both the soccer and the non-
soccer kind, will affect the way it flies through the air. But the
physics of rotational motion isn't all that different from the physics of
translational motion. It still involves things like position, velocity, and
acceleration, and many of the equations we used to describe
rotational motion will look really familiar to you, but there are some
important differences, like instead of positions, there are
angles. Instead of points along a line, you follow points along an
arc, and there are times when rotational motion can explain things
that sound impossible, but are actually true. Like when a point on a
spinning wheel is actually standing still. So the rules here are the
same, but rotational motion has what you might call its own circular
logic.

(Intro)

When it comes to translational motion, we tend to talk about
position in terms of x and y. Where is this object horizontally, and
where is it vertically? Those axes make sense, because we're
usually tracking the object's motion along those directions. But for
rotational motion, we really want to know the object's angle: what
we call theta.

Say we have a big disc with a dot painted on it. If we call the right
side of the disc our starting point, then when the dot is at the right,
its angle will be zero, and when the dot is at the left, its angle will be
180 degrees, half of a full circle. But even though we've been
measuring angles using degrees until now, there's another unit that
physicists use a lot. This will be the primary unit we use in this
episode and the next. That unit is called the radian, and its name
comes from the fact that it's based on the radius of the circle.

If you think back to basic geometry, you'll recall that the
circumference of a circle is just 2 times pi times the circle's radius.
Radians describe angles by essentially telling you how much of that
circumference is covered by a given angle.

So, 360 degrees, which is a full circle's worth of angles, would be 2
pi radians. 180 degrees, or half a circle's worth of angles, would be
pi radians, and to convent any number of degrees to radians, you
just multiply the degrees times pi and divide by 180.

So now we know how to describe the angle of something that's
rotating, but what about the velocity of its rotation? Well, we've
already learned that plain old translational or linear velocity is a
measure of an object's change in position, and in the same way,
rotational velocity is a measure of an object's change in angle. This
is known as angular velocity, and it's represented by the lowercase
Greek letter, Omega, which I want to point out looks a bit like a 'w',
but isn't a 'w'. And as you might have guessed by now, angular
velocity is the derivative of the rate of change of angular
displacement with respect to time.

But we can also describe an object's rotation in terms of its
tangential velocity. This is the same type of velocity we used when
we talked about the physics of uniform circular motion. Remember?
With the key spinning around on a string on that vomit causing
carnival ride? In those cases, we described how, when an object
moves along a circular path, its velocity is perpendicular to the
radius of the circle in the direction of the motion. When you think
about it, any rigid object rotating around a fixed axis is basically a

set of points all moving around along circular paths.

So, at any given moment, each of those points will have a
tangential velocity that depends on the path it moves through,
specifically the radius of that path. In fact, its tangential velocity will
be equal to its angular velocity times the radius. It's easy to see why
this makes sense, if you picture the spokes of a rotating wheel. All
of the points along each spoke have to have the same angular
velocity, because they all cover the same angular distance in the
same amount of time. But to get from, say, the right hand side of
the circle to the bottom, the points on the outside of the wheel will
pass through a much bigger arc, covering more distance basically,
than the points on the inside, so the further that a point on the
spoke is from the center of the wheel, the greater its tangential
velocity has to be.

Like circular motion, rotational motion can also be periodic, periodic
being when the rotation repeats after a set amount of time, which is
represented by capital 'T', also called the period. And the equations
that describe periodic motion are pretty much the same as the ones
we used for a single point moving along a circular path. So the
frequency, or number of rotations that happen every second, is
equal to one, divided by the period. But frequency and angular
velocity are really just two different ways of describing the same
thing -- they just use different units. Frequency is measured in
rotations -- or revolutions -- per second, and angular velocity is
measured in radians per second. And one revolution is equal to the
circumference of the circle: 2 pi radians.

So, in order to convert from frequency to angular velocity, all you
need to do is multiply the frequency by 2 pi. Now, there’s a special
case when it comes to the velocity of rotating objects, and that’s
what’s known as rolling without slipping. This kind of motion shows
up in real life all the time. It’s what happens to your car’s tires
when you drive down the street, as long as you aren’t skidding --
which, let’s hope you aren’t. And it’s what a train’s wheels do as
they move along the track. But it turns out that the translational
velocity at the bottom of the wheel is super weird. Mainly, because
at any given moment, the point at the bottom of the wheel doesn’t
have a translational velocity. In other words, it doesn’t actually
move.

To figure out why, let’s experiment with a bicycle wheel. If you roll
the wheel along the floor for one full rotation, that means that the
entire circumference of the wheel will touch the floor, one point at a
time. And the center of the wheel will move forward by a distance
that’s equal to the circumference of the wheel -- aka its radius,
times 2 pi. And the time it took to move that distance was equal to
the period of the motion. So, the translational velocity of the center
was equal to the radius, times the angular velocity.

Now, what about the top of the wheel? It has the same translational
velocity as the center of the wheel, plus the tangential velocity that
comes from the wheel’s rotation. Because, at the top of the wheel,
the tangential velocity is pointing in the direction the wheel is rolling
in. And in the same way, the bottom of the wheel has the same
translational velocity as the center of the wheel, minus the
tangential velocity that comes from the wheel’s rotation. Because
at the bottom of the wheel, the tangential velocity is pointing
opposite to the direction the wheel is rolling in.

Here’s the weird part: We just saw that the translational velocity of
the wheel is equal to the radius, times the angular velocity. And we
know that in general, the magnitude of tangential velocity is also
equal to the radius, times the angular velocity. So, the top of the
wheel will be moving exactly twice as fast as the center of the
wheel, relative to the ground. Because, to get its total velocity, you
add the translational velocity to the tangential velocity. But the
bottom of the wheel won’t be moving at all... because its total
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velocity is its translational velocity minus the tangential, since
they’re moving in opposite directions.

As a result, the total velocity at the bottom of the wheel is zero.
Even though the wheel is clearly moving relative to the ground. But
if you look at the wheel’s motion at any given instant, you’ll see
that whatever point is at the bottom of the wheel can’t be moving
relative to the ground. If it was moving relative to the ground... that
would be what we call slipping. Like when a car is skidding on an
icy ground: The wheel isn’t turning, but the bottom of the wheel is
moving in relation to the ground, because it’s sliding along on top
of it. But this wheel isn’t slipping -- its bottom has a total velocity of
zero, because its velocities cancel out.

OK: I know I just blew your mind, so while you put your head back
together, I want to talk about one more basic quality of rotational
motion: angular acceleration. Based on what you already know
about acceleration, you can already guess that angular acceleration
is the derivative of angular velocity. It’s represented by the
lowercase Greek letter alpha, and it describes how an object’s
angular velocity is changing over time. And as an object rotates,
each point on it can actually accelerate in two different ways.

Radial acceleration is another term for what we’ve been calling
centripetal acceleration up until now. It’s the acceleration inward of
any point on our rotating object, and it’s equal to the angular
velocity, squared, times the radius. But there’s also tangential
acceleration, which describes whether an individual point on a
rotating object is speeding up or slowing down. So, like linear
velocity, tangential acceleration depends on the distance between
the point and the center of the object. More specifically, it’s equal to
the angular acceleration, times the radius.

So you see, angular position, velocity, and acceleration relate to
each other in much the same ways that linear position, velocity, and
acceleration do. This allows us to talk about rotational motion with
terms and equations that are familiar to us, once we’ve gotten the
basics of translational motion under our belts.

Next time, we’ll see how how the logic of rotational motion applies
to another idea: momentum! For now, you learned about the
qualities of rotational motion, including angular position, angular
velocity, periodic motion, and the special case of rolling without
slipping. We also talked about angular acceleration, as well as
constant angular acceleration.

Crash Course Physics is produced in association with PBS Digital
Studios. You can head over to their channel to check out amazing
shows like It's Okay to be Smart, Blank on Blank, and Shank's FX.
This episode of Crash Course was filmed in the Doctor Cheryl C.
Kinney Crash Course Studio with the help of these amazing people
and our equally amazing graphics team is Thought Cafe.
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